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Abstract-In this paper we study the conjugate heat transfer across a vertical wall separating two fluids at 
different temperatures. We present a classification of the solutions of the problem in terms of two main 
parameters; E, the ratio of thickness to height of the wall and c(, measuring the ratio of the thermal resistance 
of one of the boundary layers to the thermal resistance of the wall. Numerical and asymptotic solutions 
are presented for all possible values of X. We show that a maximum average Nusselt number or non- 
dimensional overall heat flux is attained for values of m much smaller than one, but still large compared 

with E’, Copyright $> 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The importance of heat transfer phenomena associ- 

ated with natural convection in boundary layer flows 

is well known. Due to its fundamental and practical 
importance, the conjugate coupling heat transfer 
between two counter-flowing laminar natural con- 
vection flows separated by a vertical plate has received 
particular attention, and different authors have 
developed a variety of approaches aimed at under- 
standing the interplay of the physical mechanisms 
involved. Various conjugate heat transfer con- 
figurations have been studied since the 1970s using 
different approximations to deal with the difficulties 
associated with the simultaneous solution of the flow 
and thermal boundary layers and the longitudinal and 
transversal heat conduction in the solid. However, 
despite the considerable effort invested, the theoretical 
and experimental results existing in the literature do 
not yet provide a complete solution of this important 
problem, which has a bearing on many practical appli- 
cations, particularly those related to energy con- 
servation in buildings. 

The first works on natural convection coupled with 
conduction considered surfaces with specified heat 
flux or temperature distributions. Thus, Kelleher and 
Yang [I] and Lock and Gunn [2] showed that the 
temperature distribution on a plate is strongly influ- 
enced by the interaction between adjacent boundary 
layers. However, a priori specification of temperature 

or heat transfer distribution at the wall represents a 
serious shortcoming of these analyses. Lock and Ko 
[3] introduced a similarity transformation recasting 
the governing equations into a form suitable for con- 
ventional finite difference techniques. They recognized 
the effect of longitudinal heat conduction in the wall 
and pointed out that its thermal conductivity may be 
high enough to render this effect important in many 
practical cases. Anderson and Bejan [4] presented the 
first analytical treatment of the problem of counter- 
flowing free convection boundary layers separated by 
a vertical plate, using a modified Oseen technique. 
They considered the contribution of the transversal 
heat conduction in the plate, but neglected the longi- 
tudinal conduction. Using the same methodological 
procedure, Anderson and Bejan [5] studied theor- 
etically and experimentally the heat transfer through a 
vertical wall surrounded by thermally-stratified fluids. 
Viskanta and Lankford [6] applied the superposition 
technique developed by Churchill and Ozoe [7] and 
concluded that, for ordinary fluids (liquid metals 
excepted), the thermal interaction between two lami- 
nar convection systems separated by a wall is only 
moderate. However, they also suggested that further 
investigations should be carried out for cases where 
the effect of longitudinal wall conduction is signifi- 
cant. Recently, Sakakibara et al. [8] analyzed numeri- 
cally the same coupled problem, concluding that 
effectively longitudinal heat conduction in the wall is 
important when the plate is thick and has a high 
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1 NOMENCLATURE 

specific heat of fluid i 
gravity acceleration 
thickness of the plate 
length of the plate 
Nusselt number defined in equation 

(25) 
Prandtl number of fluid i, 

Pr, = VZP,C,,l& 
heat flux from fluid i to the wall 
Rayleigh number of fluid i 

temperature of the fluid i far from the 
plate 
Cartesian coordinates, longitudinal 
and transversal, respectively. 

P, 
0, 

Greek symbols 
tl heat conduction parameter defined in 

equation (6) 

ratio of boundary layer thermal 
resistances defined in 
equation (3) 
thermal expansion coefficient of 
fluid i 

plate aspect ratio 
stream function for fluid i 
thermal conductivity of fluid i 
thermal conductivity of the 
plate 
kinematic coefficient of viscosity of 
fluid i 

density of fluid i 
nondimensional temperature of 
fluid i defined in equations (15) 
and (16) 
nondimensional temperature of the 
plate defined in equation (14). 

thermal conductivity. These authors indicated that the 
use of similarity variables to reduce the governing 
equations in the numerical calculations is too complex 
for this class of problems. Cordova and Trevifio [9] 
used multiple-scales perturbation techniques to ana- 
lyze the cooling of a vertical thin plate caused by a 
free convective flow; they showed that, owing to the 
finite thermal conductivity of the plate, a longitudinal 
temperature gradient appears that prevents a simi- 
larity solution of the free boundary layer flow. Indeed, 
the mathematical problem is elliptic rather than para- 
bolic, even in the high Rayleigh number limit. 

In the present paper, a theoretical analysis is con- 
ducted of the heat transfer process between two fluids 
at different temperatures separated by a vertical wall. 
In this configuration we have two counter-flowing 
boundary layers, rendering the problem elliptic even 
in the absence of longitudinal heat conduction (whose 
effect is also included in this work). The conservation 
equations reduce to a system of five partial differential 
equations with five parameters : the Prandtl numbers 
of the fluids, Pr, and Pr,,, the heat conduction par- 
ameter CI, which corresponds to the ratio of heat con- 
ducted by the plate to the heat convected from the hot 
fluid to the plate, E, the aspect ratio of the plate, and 
finally the parameter, p, relating the two boundary 
layer thicknesses. For reference, we note here the cor- 
respondence M = /I and P = .s2/u with the parameters 
M and P of Viskanta and Lankford [6]. 

2. ORDERS OF MAGNITUDE AND 
FORMULATION 

The physical model under study is shown in Fig. 1. 
A thin vertical plate of length L and thickness h sep- 
arates two fluids with different temperatures ; the fluid 

at the left of the plate (denoted by the subscript I) is 
at a temperature T,, and the fluid at the right (denoted 
by II) is at a temperature TrrK < T,,. The thermal 
conductivity of the solid enables heat conduction both 
across and along the plate, whereas two counter-flow- 
ing viscous, nonisothermal natural convection bound- 
ary layers develop in the fluids owing to the tem- 
perature or the corresponding density differences. We 
shall be interested in steady-state solutions, and in 
particular in the temperature distribution of the plate 
and the overall rate of heat transfer. 

For fluids with Prandtl numbers of order unity or 
larger, the characteristic thicknesses of both thermal 
boundary layers are 

where Ra, x 1 are the Rayleigh numbers defined by 

h 
44-P 

Fig. 1. Schematic diagram of the physical configuration 
studied. 
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AT = T,m - T,,,, and ATi (i = I, II) are the charac- 
teristic temperature changes in the fluids, determined 
below. Here, g is the acceleration of gravity ; pi, C,, 
pl, vi and 2, are the density, specific heat (at constant 
pressure for a gas), coefficient of thermal expansion, 
kinematic coefficient of viscosity and thermal con- 
ductivity of fluid i, respectively. 

The orders of magnitude of the heat fluxes across 
the boundary layers in the fluids are 

(2) 

and by equating these two estimates we obtain the 
following relationship between the characteristic tem- 
perature changes in both fluids : 

AT,, 4:5 

Fm 
P 1 (3) 

In addition, the transversal heat flux across the wall 
must be of the same order of magnitude as the heat 
fluxes in the fluids ; that is 

1 AT5/4Ra1’4 &,AT, 1 I 
LAT’4 ’ 

c- 
h ’ (4) 

where 2, is the thermal conductivity of the plate and 
AT, is the characteristic temperature change across 
the plate. Relation (4) can be recast in the form 

c2 AT;‘4 
AT,--- 

Z AT’14’ 

where 

E = h/L cc 1 and u=%iRa,‘:‘. (6) 
I 

To see the significance of cc/s’, we note that 
AT,+ AT,, + AT, = AT and use relations (3) and (5) 
to obtain the following relationship for AT, : 

(3s~,+,4~5)!?y5+(3- 1. (7) 

The first term in (7) is much larger than the second 
for large values of the parameter a/s’, giving 

AT, 1 

XT - (#)(I +p4y 
<< 1 for ; >> 1 ; (8) 

i.e. the transversal temperature variations in the solid 
are very small, of order &‘/a at most, for large values 
of c(/a2. On the contrary, for very small values of cc/a2 
(and fi bounded), the first term in (7) is much smaller 
than the second which, along with equation (5) gives 

AT, tl 4,‘s 

__ -- 

AT 
0 cc 

8 2 
1 and AT, 1: AT for 

a 
7” 1. 
F” 

(9) 

In this limit most of the transversal temperature drop 
occurs in the solid. 

In order to ascertain the effect of longitudinal heat 
conduction on the overall heat transfer process, we 
must compare the heat transfer by conduction along 
the solid, of order h(l,AT,,/L) (with AT,, denoting 
the characteristic temperature change along the solid), 
with the heat transfer from the fluids to the solid, 
of order Lq, - L(l,AT,/h) [using equation (4)]. The 
ratio of the two is R - r2ATLW/ATW or, using relation- 
ship (0 

ATL~ R - ~(1 +p4/5)si4dr for E >> 1, 
2 

(10) 

which is independent of E in this limit. Thus the ratio 
ATJAT should be of order l/(~(l +/?‘5)5!4) for the 
longitudinal conduction to matter but, since it cannot 
be larger than one, the effect of longitudinal con- 
duction is negligible (except in small regions close to 
the edges of the plate ; see below) for values of c( such 
that cc << l/(1 +j415)5!4. This result, in turn, justifies 
the use of (8) to obtain (lo), because longitudinal 
conduction is clearly negligible (R cc 1) before a 
decreases to become of order s2. In the opposite limit, 
cc(l +$/5)5/4 >> 1, longitudinal conduction is domi- 
nant. Since R cannot be large, relation (10) then 
implies 

A71, 1 -- _ 
AT a( 1 + p‘+;‘)‘!” 

K 1 in this limit. (11) 

Finally. we write two estimates of the overall heat 
flux or Nusselt number that will guide us through the 
analysis that follows. From (4) and (8) or (9), we 
obtain 

qL Rai I4 
IW - (1 +p4!5)5’4 

for ; >> 1 (12) 

and 

for cc = O(1). 
&= 

(13) 

Therefore the non-dimensional overall heat flux or 
overall Nusselt number does not depend on a or E for 
large values of u./e2, whereas it decreases with a/&’ for 
values of a/s2 of order unity. 

Let us introduce the nondimensional variables 

X2, Y Tw- Tna 
z=--, 

h 
0, = 

T,, - T,r.x, 
(14) 

for the solid, where x is the vertical distance along 
the plate measured from its upper edge and y is the 
horizontal distance from the middle of the plate ; the 
variables 
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for the downward moving fluid in the boundary layer 
at the left of the plate ; and 

X,r = ,_x, v,, = _ Ra:,4(1’+h/2), 
Lxy 

.h,(XIr> ?I,) = ? , Qs = 
T,, - T,,, 

v,, Ra,‘[4$ T,, - Gm (16) 

for the upward moving fluid in the boundary layer at 
the right of the plate. Here f, and J,, are the scaled 
stream functions in the respective fluids. 

The Laplace equation describing the heat con- 
duction in the solid is 

(17) 

and the boundary conditions at the adiabatic edges of 
the wall are 

ae, 
ax x=o.I 

= 0. (18) 

At the interfaces solid-fluid (Z = + l/2), continuity 
of the temperature and the heat flux gives 

1 -h(X,,‘I, = 0) = Rv(X>Z = l/7.) 

and 
ae 
__lli 

E* 1 ae, 
--- 

az :=,,* = - tl x::4 aq, rl,=o 

(19) 

and 

&(x,,,‘1,, = 0) = &(1-X,” = -l/2) 

af3, E * 

and 
I ao,, 

aZ ;= _,,* = -3 x$” ah ,,,,=o’ (20) 

The nondimensional longitudinal momentum and 
energy equations for both fluids take the form 
(i = I, II) 

with the boundary conditions 

,f; = g = 0 at 

0, ~3 = () for 
3% 

9, = 0, (23) 

V,+a, (24) 

in addition to the conditions (19) and (20). The initial 
conditions for equations (21) and (22) at x, = 0 and 
x,, = 0 are the well known self-similar solutions of 
these equations without the terms proportional to xP 
The solution of the problem (17))(24), for which some 
numerical results have been presented in ref. [8], 
should provide 

and the overall Nusselt number 

- 4L 
Nu = 1,AT’ 

where 

(25) 

4 = _ i,Raii4AT ‘3 $ 

s I L o ah,::4 

(26) 

We notice here for reference that the overall heat 
flux CJ from fluid I to the wall coincides with the heat 
flux from the wall to fluid II, owing to the adiabatic 
conditions at the edges of the plate. 

In the remainder of this paper we classify the solu- 
tions according to the value of x(, taking advantage of 
the fact that E’ is very small in general. For large values 
of a/e’ the transverse temperature variations in the 
plate are very small and the plate temperature can be 
assumed to be a function of the longitudinal coor- 
dinate x only. (It is to be noted that neglecting the 
transverse temperature variations does not mean neg- 
lecting the transverse temperature gradient, which is 
always retained in the analysis.) In Section 3 we pre- 
sent numerical solutions of this problem for CL = 0( 1) 
and analyze the limits of large and small values of 
r using asymptotic and numerical techniques. The 
temperature variation across the plate must be taken 
into account for a/s’ of order unity, but the longi- 
tudinal heat conduction is then negligible, except in 
small regions close to the edges of the plate. Numerical 
solutions for this case are presented in Section 4, and 
the asymptotic limits of large and small values of IX/C’ 
are analyzed. 

3. CASE E + 0 WITH ci FINITE 

In this case the non-dimensional transverse tem- 
perature variations in the plate are very small, of order 
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&‘/CL Integrating the energy equation (17) across the 
solid and applying the boundary conditions (19) and 
(20), we obtain 

d26, i ae, 1 a~,, 
adXZ = x14 al?, ‘l,=cj - ~(1 -x)1,4 an,, ‘1,1=0’ 

(27) 

with 

1--4(X,,‘II = 0) = 41u -XII>?11 = 0) = &dx). 

(28) 

The problem (18), (21)-(24) (27) and (28) has been 
solved numerically. For this purpose, the non- 
dimensional wall temperature 19, was computed from 
equations (27) and (18) by means of a pseudo-tran- 
sient procedure that amounts to writing equation (27) 
in the form 

ae 2 
2 = ax1!4(1 _x,‘:“?” 
at 8x2 

a4 x 1’4 ao,, 
-(l-x)1’4q”+~~ o) I I 

and marching in the artificial time ‘t until a steady state 
is attained. The nondimensional heat fluxes (atij/anJO 
were obtained at each time step, in terms of the instan- 
taneous wall temperature distribution, by solving the 
boundary layer equations with a standard finite 
difference method. 

3.1. Asymptotic limit a + co 
The asymptotic solution of the problem for large 

values of c( is important because it is applicable to 
many practical cases of metallic plates in air or water. 
For a >> 1 the nondimensional temperature of the 
plate changes very little in the longitudinal direction. 
In fact this change is of order CI-’ as shown by the 
order of magnitude estimate (11). Neglecting such a 
small quantity in the first approximation, the tem- 
perature of the plate can be approximated by an 
unknown constant QWO. and the flows in the boundary 
layers are then self-similar, of the form 

and 

.fi = (1 -&0)‘14g[(l -&“)%> Pr,l, 

4 = (1 -&dM[(l -4d”4rl~, Pr,l, (29) 

where g(l, Pr) and &t, Pv) are the solution of the 
classical problem 

$+d+{;($J-;g~}. (31) 

(32) 

and zi = $(‘X) = 0, (33) 

and use has been made of the invariance of equations 
(31) and (32) under the group of transformations 
g + B’j4g, 4 => B4, and 5 * B-“4<, with B arbitrary. 

The solution of equations (31))(33) can be found 
elsewhere (Kays and Crawford, [lo]). In particular, 
the nondimensional temperature gradient at the wall 
is given by the very good correlation 

d4 
d5 t=,, 

= -G(Pr,) 7 

The unknown BWO can 

3 

-[ 

2Pr,/5 ’ 4 

4 l+2Pvf1+2Pr, 1 

(34) 

be found by using equations 
(29) (30) and (34) to evaluate the right hand side of 
equation (27) and then integrating this equation over 
x with the boundary conditions (18). The result is 

Qw,, = 
1 

(35) 

where G, = G(PrJ. Assuming that the Prandtl num- 
bers of the two fluids are of the same order, we can 
see that &, --* 1 for large values of j and BWO + 0 for 
small values of /I. The two limits correspond to the 
cases where the thermal resistance of the very thin 
boundary layer of fluid I or II, respectively, is neg- 
ligible and the temperature of the plate is very close 
to T,, or to Trim. In the particular case in which the 
fluids at both sides of the wall are the same, /l = 1 and 
BWO = l/2. Once 8,, is known, the total heat transfer 
rate given by equation (26) and the overall Nusselt 
number given by equation (25) can be evaluated, 
giving 

NM = ;G,(l -&,,,)5’4Ra;~4. (36) 

This result can be improved by computing the next 
term in an expansion of the solution in powers of CI~‘. 
Such calculation is summarized in the Appendix and 
gives the correction factor 

11 +a-1Wr,,Pr,I,8)1 (37) 

for the Nusselt number equation (36), with Fgiven by 
equation (Al 3). The resulting approximation turns 
out to be very good, even for CI of order unity. 

3.2. Asymptotic limit a + 0 
Taking the limit LY -+ 0 in equation (27) we find, 

as was advanced in Section 2, that the effect of the 
longitudinal heat conduction in the solid becomes neg- 
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ligible and the local heat flux from fluid I to the wall 
equals the heat flux from the wall to fluid II at each 
point of the wall. Since the second of these fluxes is 
obviously finite near the upper edge of the wall, so 
must be the first, requiring that the wall temperature 
and the temperature of fluid I be of the form 
[(l - 0,), Q,] N xl”. Analogously, (&, 0,,) N (1 - x)“j 
near the lower edge. Appropriate variables to deal 
with this situation are 

e” = &+x-l 
w x1/5(1 -X)’ 5 ’ 

and 

ri! = 
R@ ( -h/2 +JJ) 

Lx!‘5 ’ 

(38) 

Equations (21)-(24) and (28) were rewritten in 
terms of these variables, whereas equation (27) was 
replaced by its limiting form 

and the resulting problem was solved numerically 
using the same method commented on before, with a 
term a&J& added to the left hand side of equation 
(39) during the pseudo-transient. 

The solution of this problem does not satisfy the 
adiabatic conditions (18) at the edges of the plate. 
Evaluating the left hand side of equation (27) with 
this solution, we find that it is of order a/x915 near 
the upper edge, becoming of order unity for x N asis, 
where (l-0,) - c( ‘I9 In this region, and in a similar 
region around the lower edge, the effect of the longi- 
tudinal conduction in the solid is not negligible. 
Analysis of these regions, which is not presented here, 
would determine the precise values of the tem- 
peratures at the edges. 

3.3. Results 
The wall temperature distribution resulting from 

the numerical solution of equations (18), (21)-(24), 
(27) and (28) is plotted in Fig. 2 for Pr, = 1, fl = 0.5 
and 1, and different values of LX, while Fig. 3 is a sample 
nondimensional temperature profile in both fluids for 
CI = 0.1 and fl = Pri = 1. The results of Fig. 2 show a 
flat temperature distribution for CI above about 0.5. 
For smaller values of LX, the temperature of the upper 
half of the plate begins to approach the temperature 
of the hot fluid, while the temperature of the lower 
half of the plate approaches that of the cold fluid. The 
same trends persist for smaller values of fi, but the 
plate temperatures are lower. For t( << 1 longitudinal 
heat conduction in the wall becomes negligible, except 
in small regions close to the edges. Figure 2 also shows 

0.2 0.4 0.6 6.8 1 
X 

Fig. 2. Non-dimensional wall temperature distribution for 
several values of a, with Pr, = Pr,, = 1 and 6 = 0.5 and 1. 

the solution in the asymptotic limit c( -+ 0 of Section 
3.2. 

In Figure 4 we compare the wall temperature dis- 
tributions from the numerical solution and the two- 
term asymptotic solution for large values of tl. Here 
we chose /I = 1, Pr, = PrIl = 1, and two different 
values of tl. The difference between the two solutions 
is rather small for c( = 0.5, and decreases rapidly with 
increasing CC. For CL < 0.5 the asymptotic solution over- 
estimates the longitudinal temperature gradients, and 
pronounced discrepancies can be appreciated for 
tl= 0.1. 

Figure 5 shows the overall reduced Nusselt number 
Nu/Ra:14, computed from the numerical and asymp- 
totic solutions, as a function of cz for /I = 0.5 and 1. 
As can be seen, the asymptotic solution for large c( 
predicts correctly the overall Nusselt number for 
values of c1 > 0.5. As was mentioned before, the ther- 
mal resistance of fluid II is smaller than that of fluid I 
when /I <: 1. It turns out that a decrease of/l leads to 

0.6 

0.0 
-10 -6 -2 2 6 

I 

Ir 
Fig. 3. Nondimensional temperature profiles in both fluids 
for M = 0.1, B = Pr, = 1, and different values of x. Exper- 
imental results from ref. [8] for x = 0.25 and 0.75 are also 

included. 
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o.aom 
0.2 0.4 0.6 0.a 1.0 

x 
Fig. 4. Comparison of the nondimensional wall temperatures 
from the numerical solution and the asymptotic solution 
for large values of LX Displayed distributions correspond to 

c( = 0.1 and 0.5, and B = PrI = Pr,, = 1. 

a Nusselt number larger than for the symmetric case 
/? = 1. The solutions for p > 1 can be obtained from 
those of fi < 1 using the invariance of the problem 
under the transformation 

Perhaps the most noticeable feature revealed by 
Fig. 5 is the increase of the overall Nusselt number 
with decreasing CI. To explain this result we may begin 
recalling that longitudinal heat conduction makes the 
plate temperature uniform for large values of CI, lead- 
ing to constant temperature differences between the 
plate and each of the fluids. Then, as CI decreases, 

i&/Ra;” 
0.40 

\ 

g!!!.! _ ._________~ B =0.5 1 

o*!O; ix 10 

Fig. 5. Overall reduced Nusselt number, %/Ru,“~, as a func- 
tion for a, for p = 0.5 and 1. Results from the numerical 
solution (dashed curves) and from the asymptotic solutions 

for large and small M. 

Table 1. 

1 0.667 0.5 0.4 0.333 0 
0.242 0.291 0.324 0.349 0.367 0.535 

longitudinal temperature variations arise in the plate 
that increase these solid-to-fluid temperature differ- 
ences in some parts of the plate and decrease them 
in others. But, since the local heat flux is roughly 
proportional to the corresponding temperature 
difference to the power 5/4 (cf. the group of trans- 
formations mentioned in the paragraph below equa- 
tions (31)-(33) and the analysis of the following sec- 
tion), the effect of the former regions offsets that of 
the latter, resulting in a net increase of the overall heat 
transfer. Moreover, we’ll see in the following section 
that the temperature drop across the plate reduces the 
temperature differences between the surfaces of the 
plate and the fluids when M becomes of order E?, and 
the overall heat flux then decreases with CL Therefore, 
a maximum overall Nusselt number exists for some CL 
verifying E* << CI << 1. Values of this maximum Nusselt 
number are given in Table 1 for some values of /3. 

These results, valid in the asymptotic limit E + 0, 
correspond to the solution of Section 3.2. Values of 

for /3 > 1 can be obtained from the ones of the table 
using the transformation commented on before. 

4. CASE E -rO WITH a/2 FINITE 

In this case the non-dimensional temperature varies 
linearly across the plate between values e,,(x) and 
0,,,(x) at the faces, with 0,,(x) -B,,,(x) = 0( 1). As in 
Subsection 3.2, the longitudinal heat conduction can 
be neglected, except in small regions close to the edges 
of the plate, and the heat flux from fluid I to the left 
face of the wall and from the right face to fluid II are 
locally equal to each other, and equal to the heat flux 
across the solid. Also as in that case, the facts that the 
heat flux in fluid II is finite at the upper edge and the 
heat flux in fluid I is finite at the lower edge imply 
[( 1 - 0,), 01] N xl” for x small and (0,, 8,,) - (1 -x)‘@ 
for (1 -x) small. The variables (38) are still appro- 
priate for the fluids, and the conditions that the three 
heat fluxes referred to before be equal are 

For the pseudo-transient numerical treatment, this 
equation was written as the pair of equations 

and 
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which amounts to assigning a fictitious thermal inertia 
to the interfaces. 

The regions around the edges where longitudinal 
conduction matters are now of length O(E), com- 
parable to the thickness of the plate. The temperature 
of the solid in these regions differs from the tem- 
perature of the corresponding fluid by amounts of 
order E’!~. 

In the asymptotic limit a/e’ + cc, the heat fluxes in 
the fluids remain finite and equation (40) implies B,i --) 
Q,,,, recovering the limit c( + 0 of Subsection 3.2. The 
lengths of the regions where longitudinal conduction 
matters begin to increase when a/r’ becomes much 
larger than E-“~. 

In the opposite limit, E/S’ -+ 0, equation (40) implies 
that the heat fluxes in the fluids tend to zero and most 
of the temperature drop occurs in the solid : O,, -+ 1 
and Owl, + 0, except in small regions near the edges. 
Outside of these regions, the solid and fluid variables 
are of the form 

8, =~+~+(~~5n~,+o[(~~‘sl 

and, to leading order, 

.K = (;J’5B[($i Yi,> l-%-j 

7,,=(~~51[(~~:5il,;Pr,] 

and 

Fig. 6. Nondimensional temperature distributions at both 
surfaces of the plate from the numerical solution and from 
the two-term asymptotic solution for small values of a/,?. 
Upper curves correspond to the side facing the hot fluid. 

Results obtained in ref. [S] are also plotted. 

(41) 
and, evaluating the heat flux across the solid, 
9 = (3~,AT/h)aQ,/&, with this expression, the overall 
Nusselt number is 

(42) 

(43) 

where S(t, Pr) and $(<, Pr) are the solution of the 
classical problem of a boundary layer with a constant 
heat flux at the wall (d$/d[]” = -l), which can be 
found elsewhere [lo]. In particular, 

J(O, Pr) = G(Pr) E 
( 

4+9Pr”2 + 1OPr I.” 

Pr ) 

(44) 

To this order, the nondimensional plate tem- 
perature is 

+fi4!5C7(Pr,,)(l -x)“‘(z-:)I (45) 

(46) 

Notice that, since aRa:.‘4/E2 = (&,,/A,)/E, this Nusselt 
number does not depend on the Rayleigh number to 
leading order. 

The distributions of O,,, &,, resulting from the 
numerical solution of the problem are plotted in Fig. 
6 for several values of cc/z. The two-term asymptotic 
solution (45) is also plotted for cl/c’ = 0.1 in order to 
compare with the numerical results. The discrepancies 
are significant for values of a/e’ > 0.1, and a third 
term would be needed in the asymptotic expansion to 
obtain a better approximation. Results for the limit 
u/c’ t CD are also included in Fig. 6, as well as a couple 
of points corresponding to the numerical results of 
ref. [8]. Figure 7 shows the overall reduced Nusselt 
number, Nu/Ra{ “, as a function of a/c’ for two differ- 
ent values of /3. Both the numerical and the two- 
term asymptotic solution (46) are plotted. Again the 
agreement is good for values of a/s’ < 0.1. 

Finally, we note that the boundary layer approxi- 
mation breaks down when CC/E’ becomes of order 
Ra,- 5!4, giving way to another regime in which the 
motion of the fluids occurs in regions of characteristic 
size L. For still smaller values of a/s2, this motion 
ceases to be relevant to the heat transfer, which occurs 
purely by conduction. 
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Nu/Ra;’ 
0.40 . 

- _ Asynp solution jbr a/e’4 
i - - - Nwnmical soltdim~ for g/2=0(1) 
: --------- Asymp. sohticm for a/t ,>1 

Fig. 7. Overall reduced Nusselt number, Nu/Ra:‘4, as a func- 
tion of a/e’, for 1 = 0.5 and 1. Results from the numerical 
solution (dashed curves) and from the asymptotic solutions 

for small and large a/e’. 

5. EXAMPLE 

An overview of the overall reduced Nusselt number 
as a function of CI for E = 0.1 is presented in Fig. 8 for 
two different values of /?, (B = 0.5 and 1). This figure 
covers all the possible values of c( and demonstrates 
the validity of the asymptotic limits we have analyzed. 
The results for different values of /3 coincide in the 
pure conduction regime (for very small values of ‘1, 
such that CI << E*), and begin to separate when the 
effect of the natural convection becomes important, 
reaching higher values of the reduced Nusselt numbers 
for smaller values of /3. The two-term asymptotic solu- 
tion for cc/a’ << 1 is applicable up to U/E * = 0.001, and 
the numerical solution for u/s’ of order unity, which 
does not include the effect of longitudinal heat con- 

Ni/R CL;” 

T- 

io 6. CONCLUSIONS 
a 

Fig. 8. General view of the overall reduced Nusselt number, 
Nu/R~:‘~, as a function of a, for B = 0.5 and 1, and E = 0.1, 
obtained from the numerical and the asymptotic solutions. 

duction, covers all the parametric space up to tl = 0.1. 
For comparison, we have included in Fig. 8 the result 
of ref. [6] for /I = 1 and Pr, = 0.7. If the effect of the 
slightly lower Prandtl number were corrected, this 
point would shift upwards approaching the dashed 
curve. The numerical solutions obtained in Section 4 
for xi&* = O(1) and in Section 3 for x = O(1) meet 
with each other in a fairly smooth way for c( about 
0. I. It is here that the effect of longitudinal heat con- 
duction first enters the solution, and also where the 
reduced Nusselt number reaches its maximum. This 
maximum is close to the value found in Section 3.2 
for E + 0. 

By way of illustration, let us compare briefly these 
results with the experimental results of Sakakibara et 
al. ([S]). In their experiments, two expanses of air at 
temperatures r,, = 302.7 K and T,im = 292.5 K are 
separated by a plate 20 cm high and 2 cm wide. With 
these data, the Rayleigh number is Ra, = 7.455 x IO6 
and the values of E and b are 0.1 and 1, respectively. 
The computed values of cc are LX = 8.8 for an alu- 
minium plate and c( = 0.0796 (a/s’ = 7.96) for a Pyrex 
glass. In the first case, the relatively large value of CI 
indicates that the non-dimensional wall temperature 
is very close to 0.5 and the longitudinal heat con- 
duction is extremely important. The second case is at 
the border of the two cases analyzed in the present 
work, and the longitudinal heat conduction is not 
important. The experimental temperature profiles cor- 
responding to this case have been transformed to our 
variables q! and included in Fig. 3. The small dis- 
crepancies between the numerical computations and 
these experimental results can be attributed to two 
different causes. Firstly, the slightly different values of 
the Prandtl numbers (0.71 vs 1) and of TV are no doubt 
responsible for the boundary layer appearing thinner 
in the computations than in the experiment. Secondly, 
the temperature drop across the plate is not entirely 
negligible in this experiment (nor does our analysis 
predict otherwise), whereas this effect was not 
included in the computations of Section 3. This is the 
reason for the discrepancies of the point on the right 
side of the plate in the profile for x = 0.25 and of the 
point on the left side in the profile for x = 0.75. An 
idea of the magnitude of the temperature difference 
between the two sides of the plate can be obtained 
from the evolution of the couples of curves in Fig. 6 
for the three values of c~js’ displayed. The temperature 
difference should be small for r/s’ = 7.96, according 
to these results, but still of the order of the dis- 
crepancies in Fig. 3. Thus, overall, we conclude that 
the comparison is favorable. Regrettably, no value of 
the Nusselt number appears in ref. [8], preventing 
direct comparison for this important quantity. 

In this paper we have studied analytically and 
numerically the conjugated heat transfer across a wall 
separating two fluids at different temperatures. For 
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large Rayleigh numbers, this problem depends on five 
nondimensional parameters: CI, /I, E and Pri. All of 
our results correspond to the asymptotic limit E -+ 0. 
Guided by the order of magnitude analysis of Section 
2, we have discussed separately the case in which c( 
remains finite as E tends to zero and the case in which 
a/e’ remains finite. 

In Section 3 we have formulated and numerically 
solved the problem for the first of these cases. In 
addition to obtaining the numerical solution, we have 
analyzed the asymptotic limits of large and small CL 
In the high CI limit, the longitudinal heat conduction is 
extremely important in the plate and must be retained, 
whereas the temperature variation across the plate is 
very small and can be neglected (which does not mean, 
of course, that the transversal temperature gradient is 
negligible ; it is important and is always accounted for 
in the analysis). This transversal temperature vari- 
ation grows when c( decreases, becoming of order 
T,, - T,im for M of order a*. The limit CI + co is regular, 
and the asymptotic solution is sought as an expansion 
in powers of CL-‘. Comparing this asymptotic solution 
with our numerical results and with those previously 
published in the literature, we find that a two-term 
expansion already gives very good results for values 
of IX as small as 0.5. The influence of p, which takes 
values from 0 to co, and of the Prandtl numbers are 
explicitly shown in our asymptotic solution [see equa- 
tions (35), (36) and the Appendix]. For very large 
values of p, the problem reduces to that of a uniform 
plate temperature, equal to the temperature T,, of the 
hot fluid at the left of the plate. In the opposite limit 
of very small values of b, the temperature of the plate 
takes the value T,,_ of the cold fluid at the right. 
We have given particular attention to the case /l = 1, 
which includes the situation in which the fluids at both 
sides of the plate are the same. 

The limit c( -+ 0 is analyzed in Section 3.2. In this 
limit, the effect of the longitudinal heat conduction is 
very small and can be neglected except in small regions 
that appear around the edges of the plate in order to 
satisfy the adiabatic boundary conditions. The solu- 
tions in these regions are complex and are omitted 
here, but they have only a local effect. The overall 
Nusselt number in this asymptotic limit is the 
maximum attainable for given values of p and the 
Prandtl numbers. 

The case of a/a’ finite as F + 0 has been discussed in 
Section 4. Numerical solutions of the corresponding 
problem have been obtained for a/E2 = O(l), whereas 
the mathematical problem for a/~’ >> 1 is seen to 
coincide with that of Section 3.2. The singular limiting 
case a/s’ << 1 has been also analyzed, working out a 
two-term asymptotic expansion. In this limit we 
obtain good qualitative agreement with our numerical 
results and with those of refs [6] and [8], and probably 
a third term in the expansions would bring the asymp- 
totic results to quantitative agreement. 

The full parametricdependence has been presented 
in all the asymptotic limits analyzed. The overall non- 

dimensional heat transfer rates are obtained both 
from the numerical and from the asymptotic solu- 
tions, when applicable. For large values of a/s’, the 
overall Nusselt number increases with decreasing E 
and does not depend on E, while, for values of a/e’ of 
order unity, the overall Nusselt number decreases with 
CI at E constant. From this, we conclude that the overall 
Nusselt number is maximum for a finite value of (I 
verifying E’ cc x << 1. 
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APPENDIX 

The solution of equations (18) (21))(24), (27) and (28) 
for c( >> 1 can be written in the form (i = I, II) 

(AlI 

where the leading terms of these series are given by equations 
(35), (29) and (30). In this Appendix we compute the second 
terms. 

First, carrying equations (29), (30) and (Al) into equation 
(27), collecting terms of order unity, and integrating twice 
the resulting equation, we find 
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H,, =~G,(l-8,,)54((1-~)i4+~~-~74+C,) 

l+C,-x7’+‘+ i a,x” ’ 1 n=2 

=;G,(I-8,)5'4 C,+;+x;;"- i jz a~;‘) 642) 

where C, is an unknown constant and, for convenience, we 
have written O,, in two alternative forms as power series of 
x, and of x,,. Here a, are the coefficients of the binomial 
expansion of (1 -x)74. 

Second, as can be easily verified by substituting equation 
(Al) into equations (21)-(24) and (28) and collecting terms 
proportional to a-‘, the quantities B,, and f;,, (i = 1, II) 
satisfy linear problems whose solutions for a surface tem- 
perature of the form 0,, = AX: would be 

and 

I! 
XI = Ax1(1-8,,,)~‘~g,[(1--8,,)‘~~,,Pr,l. 

6, = -Ax;~,[(I-~,,)“~~,,P~,I. (A3) 

with g,(t, Pr) and 41(t, 1%) satisfying 

= 0, (A5) 

I 
=O, 

(W 

dgi g, =-=c/3-1=0 at t=O 
d5 

and $$=4, =0 for t-tco. (A7) 

The functions G,(n, Pr) = -d$,/d[ll=O obtained from the 
solution of equations (A5)-(A7) are given in ref. [9]. 

Then, taking advantage of equations (A3) and (A4) and 
of the series expansions (A2) for Q,,, and applying the super- 
position principle to the linear problems for f;, and .9,,, we 
immediately obtain 

+ f) a&, (n. Pr,)f 
i 
. (A@ 

s-1 

and 

x 
i 
CC, +~)G,(O,pr,,)+G,(~,pr,,)~:,~ 

a,G, (n, Pr,,)x;, (A9) 

Finally 

c 

’ 
= HNWj, f’rd 

HD(Pr,. Pr,,) ’ (AtO) 

is obtained by carrying equations (A8) and (A9) into equa- 
tion (27) and integrating this equation over x with the bound- 
ary conditions (18). Here, 

H D = G II (0)+ (Al21 

and we have used the notation G,,(n) = G,(n,Pr,). Notice 
that both HN and Ho are zero for the particular case in which 
the fluids at the two sides of the plate are the same. In this 
case symmetry implies 8,,(1/2) = 0 and C, = - 7/8. 

The factor F(Pr,, Pr,,, 8) in the correction equation (37) to 
the Nusselt number equation (36) can now be evaluated as 

(A13) 


